Math 250 - Notes: Sect. 4.1 - Antiderivatives

Definition: A function, F, is an antiderivative of f if $F^{\prime}(x)=f(x)$ for all x.
-example- Show that $F(x)=\frac{1}{3} x^{3}+6 x^{2}-4 x+3$ is an antiderivative function for $f(x)=x^{2}+12 x-4$
-example- Name an antiderivative function for $f(x)=2 x$.
*When determining a general antiderivative function, you need to add a constant at the end. This is because taking the derivative of a constant is 0 .

NOTATION FOR THE GENERAL ANTIDERIVATIVE:
(This is called the indefinite integral)

Basic Integration Rules:

1. Integral of a Constant:
2. Power Rule:

Math 250 - Notes: Sect. 4.1 - Antiderivatives
3. Constant Multiple:
4. Sum/Difference:
5. Trig Functions:

Math 250 - Notes: Sect. 4.1 - Antiderivatives

Practice: Evaluate each integral.

a. $\int\left(x^{2}-8 x+3\right) d x$
b. $\int\left(\sqrt{x}+\frac{3}{\sqrt[3]{x^{2}}}+\frac{1}{x^{3}}-4 x+1\right) d x$
c. $\int(3 x+2)(2 x-5) d x$
d. $\int \frac{x^{4}-1}{x^{2}} d x$
e. $\int\left(3 \sec ^{2} x+2 \csc x \cot x\right) d x$

II. Differential Equations and Initial Value Problems

A differential equation is an equation that involves a derivative of an unknown function. SOLVING a differential equation means finding that unknown function.
-example- $\frac{d y}{d x}=4 x+3$. Find $y=f(x)$.

An INITIAL VALUE (or initial condition) allows you to find the PARTICULAR SOLUTION - not just the general solution. In other words, it allows you to find "C".
-example- $f^{\prime}(x)=\frac{4}{\sqrt{x}}$. If $f(1)=3$, find $y=f(x)$.

Applications: MOTION PROBLEMS.
Recall: POSITION:

VELOCITY:
ACCELERATION:
-example- A ball is thrown upward with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$ from an initial height of 50 feet. Find the position function that gives the height, s, as a function of time, t. (note: the acceleration due to gravity is a constant: $-32 \mathrm{ft} / \mathrm{sec} / \mathrm{sec}$.)
-example- A car traveling at $66 \mathrm{ft} / \mathrm{sec}$ is brought to a stop, at constant deceleration, 132 feet from where the brakes are applied.
a. Find k , the constant of acceleration.
b. How far has the car moved when its speed has been reduced to $44 \mathrm{ft} / \mathrm{sec}$?
c. How far has the car moved when its speed has been reduced to $22 \mathrm{ft} / \mathrm{sec}$?

